
SemGuS-Lib Format 1.0

Jinwoo Kim March 28, 2022

This document defines the current version of the SemGuS format, which is intended to be the standard

input and output format for solvers aiming to solve SemGuS problems. The current version of the SemGuS

format is designed such that existing solvers supporting the SyGuS format [1] or the SMT-LIB standard

will be able to parse SemGuS problems with minimal overhead. As such, the SemGuS format borrows

many concepts and language constructs from SyGuS and SMT-LIB [2]. In particular, where the syntax

and semantics of constructs are identical, we will refrain from copying the whole definition and instead refer

readers to the corresponding sections of the SyGuS and SMT-LIB standard documents, partly in order to

keep in sync with updates to the other formats.

This document is currently incomplete; specifically, it is missing a section that details the semantics of

each command that we will describe in this document. This will be added in a future version, along with

example SemGuS problems.

An instance of a SemGuS problem consists of the following:

1. A base background theory T ,

2. A finite set of term types that dictate a universe of terms to be used in the synthesis problem, specified

as a regular tree grammar (RTG) R

3. Semantics for each constructor within the term-type declaration, specified using Constrained Horn

Clauses c1, c2, ¨ ¨ ¨ , ci

4. A set of functions f1, f2, ¨ ¨ ¨ , fj to synthesize,

5. Syntactic constraints for f1, f2, ¨ ¨ ¨ , fj , also specified as a RTG G that defines a subset of terms inside

the universe of terms defined by R

6. A semantic constraint φ that act as the behavioral specification of the set of functions to synthesize,

which may be specified over the CHCs c1, c2, ¨ ¨ ¨ , ci, a set of (implicitly) universally quantified variables

x1, x2, ¨ ¨ ¨ , xk, and the functions f1, f2, ¨ ¨ ¨ , fj themselves.

The goal of a SemGuS problem is to find a term e P G such that φre{f s is true.

1 Syntax

We now introduce the syntax for specifying SemGuS problems. A SemGuS problem xSemgusy is defined

as a list of commands xCmdys:

xSemgusy ::“ xCmdy˚

1

We now introduce the possible cases that a command xCmdy may take first; then we introduce any required

sub-expressions.

1.1 Comments

Comments in SemGuS, like SyGuS and SMT-LIB, are indicated by a leading semicolon. Upon encoun-

tering a semicolon, the rest of the input upto the next newline character should be ignored.

1.2 Metadata

SemGuS supports recording metadata related to SemGuS problems (such as problem authors, creation

date, expected answers, etc.) directly as part of its syntax. Metadata commands are specified via the

following syntax:

xSemgusy ::“ pmetadata :xAttributeyq

An xAttributey is either a single keyword or a keyword paired with a value appropriate for the attribute (see

Section 1.8).

The mechanism for specifying metadata coincides with the definition for annotations and term attributes

in the SMT-LIB Standard, except for the fact that a metadata command should not have a leading ! symbol

(see Section 3.4, 3.5 of the SMT-LIB Standard, Version 2.6).

1.3 Term Type Declarations

Term-type declarations define a universe of possible terms for use in the synthesis problem (that may be

further restricted by a separate grammar later on). For those coming from SyGuS, it is convenient to think

of the term-type declaration a declaring a background theory of terms that one may later choose to further

restrict when solving a particular synthesis problem, similar to how SyGuS problems allow one to restrict

the considered terms within a background theory such as LIA.

Term-types are declared via the following syntax:

pdeclare-term-types pxSortDeclyn`1 q pxDTDeclyn`1 qq

This syntax (including the definitions for subterms xSortDecly and xDTDecly) is identical to the datatype

declaration command declare-datatypes within SMT-LIB and SyGuS (see Section 2.9 of the SyGuS language

standard, Version 2.1, and Section 4.2.3 of the SMT-LIB Standard) except for the fact that the heading

command is named declare-term-types.

2

1.4 Semantic Declarations

SemGuS requires one to explicitly state the semantics for terms within the considered universe defined in

§1.3; combined with the term-type declarations, one may consider these as the (custom-defined) background

theory to operate over.

Semantics for terms defined in §1.3 is done using the define-funs-rec command, as following:

pdefine-funs-rec pxFunction_Decyn`1 q pxTermyn`1 qq

This syntax (including the definitions for subterms xFunction_Decy and xTermy) is identical to the com-

mand for declaring mutually recursive functions in the SMT-LIB standard (see Section 4.2.3 of the SMT-LIB

standard, Version 2.6).

Although the syntax for specifying semantics in SemGuS files is permissive, SemGuS requires that

semantics are defined using semantic relations and CHCs. In addition, SemGuS requires that these semantics

be defined on an production-by-production basis—thus in practice, the following restrictions should be

enforced by a SemGuS solver:

1. The return types of all functions declared in declare-funs-rec should i) contain an argument t of a

term-type defined in §1.3, and ii) return a value of type Bool .

2. The body part xTermy should be a match statement that matches t over the possible constructs defined

in §1.3.

In addition, SemGuS allows multiple xTermys to be associated with a single xPatterny in pattern match-

ing. This allows one to equip multiple CHCs (for cases like while loops, or nondeterminstic programs) to a

single constructor. Thus the syntax for xmatch-casey (taken from the SMT-LIB standard, used for defining

match statements) is changed to:

xmatch-casey ::“ pxPatterny xTermy`q

All other subexpressions are identical to the SMT-LIB standard.

1.5 Synth-Fun

The synth-fun command declares a single actual function to synthesize. The syntax is identical to the

synth-fun command in the SyGuS standard; refer to Section 2.9 of the Sygus format, Version 2.1 for details.

To synthesize multiple functions, one should have multiple synth-fun commands in the file, one for each

function to synthesize.

3

1.6 Constraints

The constraint command declares the behavioral specification for the functions to synthesize defined

using synth-fun. The syntax once again borrows from the SyGuS standard; refer to Section 2.9 of the Sygus

standard, Version 2.1 for details.

1.7 Other Commands

SemGuS accepts other standard SMT-LIB and SyGuS commands such as variable or sort declarations.

All accepted other commands coincide with the syntax in SyGuS and SMT-LIB; a full list of other accepted

commands can be found in §1.9.

To keep in sync with updates to SyGuS, we omit a hardcoded syntax definition for most constructs in

this part, and instead refer the reader to the corresponding sections within the SyGuS format specification.

1.8 Subexpressions

Most subexpression definitions used in SemGuS (such as xTermys, xAttributeys, etc.) are identical to

their definitions in SyGuS and SMT-LIB. We give a quick overview here.

1.8.1 Literals

Literals are special sequences of characters that are mostly used to denote values and 0-ary symbols

of a background theory. The definition for literals in SemGuS is identical to that in SyGuS; for further

information, consult Section 2.2 of the SyGuS standard, Version 2.1, or Section 3.1 of the SMT-LIB standard,

Version 2.6.

1.8.2 Symbols and Identifiers

A symbol is a non-empty sequence of alphabets, digits, and certain special characters, that may not begin

with a digit and is not a reserved word. An identifier is an extension of symbols to symbols that are indexed

by integer constants or other symbols. The syntax of symbols and identifiers in SemGuS is identical to

SyGuS and SMT-LIB; we refer the reader to Section 2.3 and 2.4 of the SyGuS standard, Version 2.1, for

further information.

1.8.3 Attributes

An attribute is either a keyword xKeywordy or a keyword with an associated value. Attributes are used

to annotate terms, as well as provide metadata in the metadata command. The syntax for keywords and

attributes is identical to that in SyGuS; we refer the reader to Section 2.5 of the SyGuS standard for

further information. An xAttributeV aluey depends on the xKeywordy it is associated with. It is up to the

4

solver to support combinations of keywords and attribute values; the SemGuS standard does not provide a

pre-defined list of keywords that must be supported.

1.8.4 Terms

Terms xTermy are used to specify grammars, constraints, semantics, and many other things. They use the

same syntax as in SyGuS; we refer the reader to Section 2.7 of the SyGuS standard for further information.

Note that any term may be annotated with an attribute via the ! xTermy xAttributey` syntax.

1.9 Command Syntax

We now give an incomplete list of commands that make up the SemGuS format, focusing on a basic list

of commands that we expect to be central to specifying a SemGuS problem. In addition to these commands,

SemGuS supports all commands that SyGuS supports with the provision that semantics of some of these

commands may be different; in essence, SemGuS diverges only from the SyGuS format through the addition

of the declare-term-types command, with some additional semantic restrictions.

Some of the productions listed here contain nonterminals (e.g., xFunction_Decy) that are not defined

in this document; for the concrete definition of these productions, we refer the reader to Section 2.9 of the

Sygus specification, Version 2.1.

xCmdy ::“ pcheck -synthq

| pconstraint xTermyq

| pdeclare-term-types pxSortDeclyn`1q pxDTDeclyn`1qq

| psynth-fun xSymboly pxSortedV ary˚q xSorty xGrammarDefy?q

| xSmtCmdy

xSmtCmdy ::“ pdeclare-var xSymboly xSortyq

| pdeclare-datatype xSymboly xSortyq

| pdeclare-datatypes pxSortDeclyn`1q pxDTDeclyn`1qq

| pdeclare-sort xSymboly xNumeralyq

| pdefine-fun xSymboly pxSortedV ary˚q xSorty xTermyq

| pdefine-sort xSymboly xSortyq

| pdefine-funs-rec pxFunction_Decyn`1q pxTermyn`1qq

| pset-info xKeywordy xLiteralyq

| pset-logic xSymbolyq

| pset-option xKeywordy xLiteralyq

5

2 Semantics

A SemGuS problem is ultimately a series of commands that describes the components of a SemGuS

problem: a grammar, a semantics that complements the grammar, and a specification.

Definition 1. A SemGuS problem over a background theory T consists of a tuple pGJ¨K,@x.ψpx, fpxqqq,

where G is a regular tree grammar equipped the CHC-based semantics J¨K, and @x.ψpx, fpxqq is a Boolean

formula over T that specifies the desired behavior of the second-order variable f . When synthesizing j func-

tions at once, this is extended such that there are j pairs of RTGs and specifications pG1J¨K1 ,@x.ψ1px, f1pxqq,

¨ ¨ ¨ pGjJ¨Kj ,@x.ψjpx, fnpxqqq.

A SemGuS problem is realizable if Ds P LpGq, such that @x.ψpx, JsKpxqq holds. If such s P LpGq does not

exist, then the problem is unrealizable.

We briefly discuss how the commands described in §2 establish the components of a SemGuS problem.

2.1 Defining the Syntax

The syntax of a SemGuS problem is defined in two steps—the declare-term-types command first declares

a background universe of terms we are willing to consider within a SemGuS problem, which may be further

syntactically restricted for each function by a grammar within a synth-fun block. We mainly consider

defining the background universe of terms through declare-term-types here, and discuss further restricting

the grammar for individual functions in §2.3.

declare-term-types is syntactically identical to the declare-datatypes command in SMT-LIB and SyGuS,

and is defined using the following syntax:

pdeclare-term-types ppδ1 k1q ¨ ¨ ¨ pδn knqq pd1 ¨ ¨ ¨ dnqq

In a SemGuS file, this command declares an regular tree grammar where each symbol δ1 ¨ ¨ ¨ δn represent the

nonterminals of the RTG. The arity of the nonterminals ki is fixed to 0 for each δi.1 Each di in pd1 ¨ ¨ ¨ dnq is

a list of constructors pc1 ¨ ¨ ¨ cmq, where each cj is, intuitively, a constructor that acts the right-hand side of

a production. The RTG that declare-term-types defines consists of the nonterminals δ1, ¨ ¨ ¨ , δn, and the set

of productions constructed as following: for each 1 ě i ě n, given the nonterminal δi, with its corresponding

list of productions di “ pc1, ¨ ¨ ¨ cmq, for each 1 ě j ě m, the production δi Ñ cj is added to the set of

productions being considered. This RTG designates the background grammar considered for a particular

SemGuS problem.

If there are multiple declare-term-types within the constructor, the background universe is considered to

be defined by the RTG obtained by taking the union of each RTG within declare-term-types. If, for whatever

reason, declare-term-types fails to declare a valid RTG, then the SemGuS file is ill-formed.
1Retaining the kis in the syntax, even though they are fixed to 0 and can be easily inferred, is a design choice to maintain

compatibility with existing SMT-LIB and SyGuS parsers.

6

Example 1. Consider a simple RTG of the form E Ñ 1 | x | E ` E. This RTG can be declared in a

SemGuS file using the following command:

1 (declare -term -types

2 ((E 0))

3 (

4 ($1)

5 ($x)

6 ($+ (e1 E) (e2 E))

7)

8)

On line 2, pE0q declares that we are declaring a single nonterminal E. On lines 4 to 6, the constructors

(RHSes) of the nonterminal E are declared: in particular, note line 6 where the RHS uses two subexpressions

e1 and e2 of the nonterminal E. The preceding $ symbols on the operators serve to distinguish between

operators in the RTG, and symbols reserved in SyGuS and SMT-LIB (other symbol names can be used as

well as long as there is no overlap between SMT-LIB).

The reason for the two-step specification, where we define a background grammar first, is because we

expect many synthesis problems to share a universe of terms, but differ in their specific syntactic restric-

tions: for examples, all LIA SyGuS problems can be understood as sharing the background LIA grammar,

which can be further restricted syntactically through another grammar (defined within the synth-fun block)

depending on the problem. Keeping a separation between the universe (i.e., the “background theory”) and

syntactic restrictions (i.e., the “grammar”) facilitates reuse, especially as semantics for operators are defined

at the background-level as opposed to separately for each grammar.

2.2 Defining the Semantics

A SemGuS file must define a semantics for each production in the RTG defined by declare-term-types

as a CHC, using semantic relations. For further details on how to define a big-step semantics using relations

and CHCs, we refer readers to the SemGuS paper [3]. Here, we assume that the user is familiar with defining

semantics in this way, and proceed to show how this information is expressed in a SemGuS file through the

define-funs-rec command.

pdefine-funs-rec pd1 ¨ ¨ ¨ dnq pt1 ¨ ¨ ¨ tnqq

Using the syntax above, define-funs-rec defines a set of n functions that may be mutually recursive, where

the name and signature of the i-th function is defined in the i-th declaration di. The function body of the

function declared in di is defined in ti, which is an expression of the return type of the i-th function.

In SemGuS, the main role of this command is to define the semantic relation for each nonterminal.

Because SemGuS requires that semantics be expressed as CHCs using semantic relations, the return type

7

for all functions should be Boolean. Additionally, the function body ti must be a SMT-LIB match statement

pmatch s pc1 ¨ ¨ ¨ cmqq where s is a variable with the sort of a nonterminal N declared in the universal syntax,

and c1 ¨ ¨ ¨ cm matches over the possible RHS productions for N .

Example 2. Following Example 1, let us see how the RTG E Ñ 1 | x | E `E is equipped with a semantics

using the following command:

1 (define -funs -rec (

2 (sem -E ((et E) (x Int) (r Int)) Bool)

3 (match et

4 ($1 (= r 1))

5 ($x (= r x))

6 (($+ et1 et2)

7 (exists ((r1 Int) (r2 Int))

8 (and

9 (sem -E et1 x r1)

10 (sem -E et2 x r2)

11 (= r (+ r1 r2))

12)))))

In line 2, we declare the semantic relation for the nonterminal E as a function semE : E ˆ Intˆ IntÑ

Bool. In lines 4-6, the match statement lists each of the possible productions of E, and for each production,

details the condition for which the relation semE should evaluate to True.

Logically interpreted, the three case statements on lines 4 to 11 each act as the premise of a CHC that

describe the semantics of the three productions of E. The function declaration on line 2 acts as the conclusion

of the CHC. For example, this means that the production E Ñ E ` E is equipped with the following CHC

as semantics:2

semEpet1, x, r1q ^ semEpet2, x, r2q ^ r “ r1` r2 ùñ semEp`pet1, et2q, x, rq

It is possible to define multiple sets of semantics for a single universe of terms; for example, one may

wish to equip a grammar with both concrete and abstract semantics. These may all be defined in a single

define-funs-rec block, or one may choose to use separate define-funs-rec blocks for each set of semantics

(similarly, it is also possible to divide a single set of semantics into multiple define-funs-rec blocks if the

semantic relations need not be mutually recursive). Regardless of the manner chosen, all functions defined

within a define-funs-rec block will be available for use in other parts of the file (e.g., when defining the

behavioral specification using constraint).
2The quantifier is left out as all variables in CHCs are implicitly universally quantified.

8

2.3 Declaring Functions to Synthesize

Each function to synthesize inside a SemGuS file is defined separately using its own synth-fun command,

which follows the same syntax as SyGuS. As in SyGuS, a synth-fun block may contain an optional grammar

block. In SemGuS, this grammar must express an RTG that is a subgrammar of the background grammar

declared using declare-term-types; this serves as the actual syntactic restriction of the function to synthesize.

Because the semantics for all terms in the background grammar have already been declared, there is no need

to state a separate set of semantics within the synth-fun block.

The use of the arguments in synth-fun is different in SemGuS compared to SyGuS, although the syntax

is the same. In SemGuS, the second element (a list of xSortedVarys; i.e., the list of input arguments) must

be an empty list3, while the third element (a xSorty; i.e., the return type) must indicate the term-type of

the term to be synthesized.4

Example 3. Following Examples 1 and 2, we now declare a function to synthesize in this background

grammar. In particular, we would like to further restrict the grammar such that a maximum of one `

operation is allowed; this can be expressed using the following command.

1 (synth -fun max2 () E

2 ((Start E) (A E)) (

3 (Start E (

4 A

5 ($+ A A)

6))

7 (A E (

8 $1

9 $x

10))

11))

In line 1, we declare that we wish to synthesize a term of the name max2 , which is of the term-type E

(that is, it should be a term in the language of the nonterminal E). Starting from line 2, we are declaring a

new grammar that further restricts the search space allowed for max2 .

Line 2 declares the nonterminals of this sub-grammar: a starting nonterminal Start , and another non-

terminal for atoms A, both of which still produce terms in the language of the (background) nonterminal E

(that is, LpStartq Ď LpEq and LpAq Ď LpEq). Starting from line 3, the productions of the sub-grammar are

listed—that Start Ñ A | A`A, and AÑ 1 | x.

Given a synth-fun block defining a sub-grammar Gsub this way, logically, a SemGuS problem is defined
3Again, this is a design choice to maintain compatibility with existing SyGuS parsers.
4This is because in SemGuS, one is more synthesizing a term which can be interpreted via the semantic relations, as opposed

to a function in a traditional sense.

9

using Gsub as the grammar, the background semantics J¨K defined in Example 2, and constraints that will

be defined further down in the file. Because LpStartq Ď LpEq and LpAq Ď LpEq, the semantics of all terms

within LpStartq and LpAq may be interpreted using the (background) semantic relation semE defined using

define-funs-rec—thus there is no need to separately declare semantics for subgrammars.

2.4 Declaring Universal Variables and Sorts

Like SyGuS, SemGuS allows one to define additional auxiliary variables and sorts through the declare-var ,

declare-datatypes, and declare-sort command. Like SyGuS, all variables defined in this manner will be uni-

versally quantified when appearing in constraints; we refer the reader to Section 3 of the SyGuS standard

for further details.

2.5 Behavioral Specifications

The behavioral specification for each function fi to synthesize is given by the series of constraint com-

mands within the SemGuS file. In particular, most of the time one will directly use the functions defined

using define-funs-rec to express that a synthesized term satisfies some constraint.

Example 4. Continuing with Examples 1, 2, and 3, we give some sample constraints one may use for max2.

If the specification was given inductively via examples, one may have constraints such as following, using

two examples:

1 (constraint sem -E max2 4 2 4)

2 (constraint sem -E max2 2 4 4)

On the other hand, a universal specification using variables could also be expressed:

1 (declare -var x Int)

2 (declare -var y Int)

3 (declare -var r Int)

4 (constraint (and (sem -E x y x) (= (ite (> x y) x y) r)))

Given multiple constraint commands, a conjunction of the constraints is took as the specification for

the target functions. constraint only allows Boolean expressions; SemGuS files that contain constraint

commands with non-Boolean expressions are ill-formed.

References

[1] Saswat Padhi, Elizabeth Polgreen, Mukund Raghothaman, Andrew Reynolds, and Abhishek Udupa. The

SyGuS languages standard version 2.1. Technical report, 2021. Available at sygus.org.

10

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6. Technical

report, Department of Computer Science, The University of Iowa, 2017. Available at www.SMT-LIB.org.

[3] Jinwoo Kim, Qinheping Hu, Loris D’Antoni, and Thomas Reps. Semantics-guided synthesis. Proceedings

of the ACM on Programming Languages, 5(POPL):1–32, 2021.

11

